/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Broker || Mandatory
Distributed HotStone

VeV Broker I

AARHUS UNIVERSITET

« Learning Goal

— Get the handle object reference methods implemented
» ¢ = getCardinHand(w,i), attackCard(w,a,d), and cousins...
* Involves objectld generation and usage

— Get the MiniDraw GUI integrated in a full client
— Get the Invoker code segregated
» Refactor ‘blob invoker’ to a subinvoker/multitype dispatch approach
* Product Goal
— JUnit test suite that cover all broker related code
— System testing of a full HotStone GUI based remote play! Wow!

eV Broker 2.1

AARHUS UNIVERSITET
« TDD the Game methods that handles object references.

* That is, write JUnit tests that implement the FRDS
method

Consider a remote method ciasse get8() inclassa, thatis, a method that return
references to instances of ClassB.

To transfer a reference to an object created on the server side, you must
follow this template

- In the Invoker implementation of ciassa.getB(), retrieve the objectld of
the ClassB instance, and use a String as return type marshalling format,
and just transfer the unique object id back to the client.

e T o el T ki il o B0

+ On the client side, in the ClassAProxy, create a instance of the ClassB-
ClientProxy, and store the transferred unique id in the proxy object, and
return that to the caller.

AU CS Henrik Baerbak Christensen

/v Small Steps

AARHUS UNIVERSITET
« Keep doing it ‘depth-first’
— But the first ‘deep dive’ have some issues

* | recommend to introduce AlphaStone as your servant
— To avoid writing too much stub code ®

 Example:
— Onmy testlist: “make getCardinHand(Findus, 0) work”™

public wvoid shouldGetCardInHand() {

Card card = game.getCardInHand(Player.FINDUS, IndexinHand: 0);
gssertThat(card, is(notNullValue()));

agssertThaot(card.getName(), is(value: "Tres"));

AU CS assertThat(card.getAttack(), is(value: 3)); 4

/v Small Steps

AARHUS UNIVERSITET

« Take small steps — again a proxy step + an invoker step

— (1) Involves making the GameClientProxy method
» Request String/objectld from the server
» Wrap that objectld in a CardClientProxy

fusr/1ib/jvm/java-11-openjdk-amdé4/bin/java ...
--» {"operationName":"game_get-card-in-hand", "payload":"[\"FINDUS\",8]", "objectId":"one-game", "versionIdentity":1}
--< null

— (2) Involves making the Invoker handling
— If OpName.equals(GAME_GET_CARD _IN_HAND)
» Ask game for the card - servant upcall
» Return the card’s objectld as serialized JSON

fusr/1ib/jvm/java-11-openjdk-amdé4/bin/java ...

-

--> {"operatigpa G e e el et " FINDUSY ", B8] ", "objectId" :"one-game"”, "versionIdentity":1}
--< {"payload'|:"\"2847f524-0edf-4c54-Bcfc-53d473ebcB77\"" J"statusCode": 268, "versionIdentity":1}

AU CS Henrik Baerbak Christensen 5

Y Small Steps - Fakelt

AARHUS UNIVERSITET
« ... But the test case likely fails (it did for me) — why?

java.lang.AssertionError:
Expected: is "Tres"

but: was "Siete"

« Because we still have Fakelt lookup code for the card!

private Card fakeItCard = new StubCard();
1 usage Henrik Baerbak Christensen (mi.racima)

private Card lookupCard(String objectId) { return fakeItCard; }

* Now test drive the invoker side’s
— Insert (card id, card) mapping in a name service
— Refactor the fake ‘lookupCard()’ method into a proper impl.

One method done; repeat
AU CS Henrik Baerbak Christensen until all covered © 6

eV ID Generation

AARHUS UNIVERSITET

 There are several ways to generate ID’s
— Invoker can do it
— Domain object can do it

* |Ds are rather pervasive (Read: all objects need it, even
the client proxy) in a distributed setting so my
recommendation is a role interface on the domain obj:

— Rolelnterface: interface Identifiable { String getld(); }
— Let Card and Hero extend that interface
— Let constructor create a random id ala

id = UUID.randomUUID().toString();

/v Pass-By-Ref Parameters

AARHUS UNIVERSITET
« (Game have many methods whose parameters are object
references @i

public Status playCard(Player wha[Card card)| {

« But - they are server created objects, so no problem

If you have a method in which a parameter is a server side object, ala this
one:

Game game = futureGame.getGame();
lobbyProxy.tellIWantToleave(game);

Then yon{g proxy code of course shall just send the objectId to the server.|This
will allow theserver side invoker to [ookup the proper server object, and pass

that to the equivalent te111wantToLeave() method of the servant object.

AU CS Henrik Baerbak Christensen 8

/v Removing Fakelt / Scaffolding

AARHUS UNIVERSITET
« Once you start removing the scaffolding/fake it code

} else if (operationMame.startsWith(OperationNames.CARD_PREFIX)) {

Card servant = lookupCard(objectId);

£ new StubCard();
rd(String objectId) { private Card lookupCard(String objectId) {

return nameService.getCard(objectId);

private
private Card

return fakelt

w TestCardBroker

° . Other teStS may fa” L shouldHandleAllAccessors()

» - fusr/lib/jvm/java-11-openjdk-amdé4/bin/java ...
— H u h — What IS gol ng on , --> {"operationName":"card_get-name", "payload":"[]","objectId":"one-card", "versionIdentity":1}
u

java.lang. Create breakpoint
at hotstone.broker.server.GameInvokerBrokerI.lambda$populateCardFunctionMap$5(GamelnvokerBrokerl.java:78)

at hotstone.broker.server.GameInvokerBrokerI.handleRequest(GameInvokerBrokerI.java:138)

AU CS Henrik Baerbak Christensen 9

/v Removing Scaffolding

AARHUS UNIVERSITET
« My original test case created CardClientProxy directly

kard = new CardClientProxy(requestor, cardld "one-card"]};

* Now, we cannot do that as
— Clients do not create cards — servers do!

« So the answer is of course...
— Servers create cards, so our test case must follow that rule

Game proxy = new GameClientProxy(requestor);
card = proxy.getCardInHand(Player.FINDUS, IndexinHand: 8);

* Ups — and test cases/doubles refactored...
— Probably other return values, so asserts must be updated...

/v Removing Scaffolding

AARHUS UNIVERSITET

 Alternatively, you can also insert your ‘test stub’ card
directly into the Invoker’s name service...

EBeforeEach Henrik Baerbak Christensen +3
public veid setup() {

HotStoneNameService nameService = new HotStonmeNameService();
String theﬂne#ndﬂnlyﬁardld = "ID4&42",;
nameService.addCard(theOneAndOnlyCardID,

nfradire 0 cinale cftiuh

introguce a singl

new StandardCard(Player.PEDDERSEN, name: "StubCard",
manaCost: 7, attack: 11, health: 42,
(internalGame, dropIndex) -> {
}, effectDescription: "Save the Whales",
Categorizable.TAUNT));

111

Invoker invoker = new CardInvoker(nameService);

crh = new LocalMethodCallClientRequestHandler(invoker);

Requestor requestor = new StandardJSONRequestor(crh);

1e | oaxy (4] 115 particutla cara 1a

card = new CardClientProxy(requestor, theOneAndOnlyCardID);

AU CS Henrik Baerbak Christensen 11

/v lterables

AARHUS UNIVERSITET
 And what about Iterable<>?

Iterable<? extends Card> getHand(Player who);

* The return type is ‘something that can iterate Cards’
— List<Card> is an lterable<? extends Card>
— And what is Card in our context?

« Solution:
— List of Objectld’s of the associated cards from server
— Client must then convert that into a List<CardClientProxy>

/v List<Something>

AARHUS UNIVERSITET

« (Gson can easily marshall and demarshall Lists but you
need a bit of ‘magic’ to define that type.
List<String>.class is not valid Java.

— Actually shown an example of it in TeleMed code

publie List<TeleObservation> getObservationsFor(String patientlId,
Timelnterval interval) |

Type collectionType =
new TypeToken<List<TeleObservation>>(){}.getType();

List<TelelObservation: returnedList;

returnedlList = requestor.sendRequestAndAwaltReply(TELEMED_OBJECTID,
OperationNames .GET_OBSERVATIONS_FOR_OPERATION,
collectionType, patientld, interwval);

return returnedList;

AU CS Henrik Baerbak Christensen 13

/v

List<String>

AARHUS UNIVERSITET

« So this is the way to go

Type collectionType =
new TypeToken<List<String>>(){}.getType();|

List<String> theIDList =
requestor.sendRequestAndAwaitReply(objectId,
thelperation,
collectionType,

who) ;

* Fill in the detalils...

AU CS

Henrik Baerbak Christensen

14

/v

AARHUS UNIVERSITET

2.2 System Testing

A full distributed playable system...

AARHUS UNIVERSITET

« A server and
— Two clients

Peddersen
Just Cute.

Q\: Z \1\

Product Goal: Full system

csdev@mi-dev: ~/proj/frsproject/hotstone-broker-start 150x22

e_get-field-size", "payload”:"[\"FINDUS\"]", "objectId":"one-game", "versionIdentity":1}
2022-11-07T14:25:53.491+01:00 [INFO] frds.broker.ipc.http.UriTunnelServerRequestHandler
statusCode":200, "versionIdentity":1}, responseTime ms=1

2022-11-07T14:25:53.495+01:00 [INFO] frds.broker.ipc.http.UriTunnelServerRequestHandler
e_get-field", "payload":"[\"FINDUS\"]", "objectId":"one-game", "versionIdentity":1}
2022-11-07T14:25:53.495+01:00 [INFO] frds.broker.ipc.http.UriTunnelServerRequestHandler
"statusCode":20@, "versionIdentity":1}, responseTime_ms=1

2022-11-07T14:25:53.500+01:00 [INFO] frds.broker.ipc.http.UriTunnelServerRequestHandler
e_get-field", "payload":"[\"PEDDERSEN\"]",6 "objectId":"one-game", "versionIdentity":1}
2022-11-07T14:25:53.501+61:00 [INFO] frds.broker.ipc.http.UriTunnelServerRequestHandler

SJEfE sPonse Tine_ms=1

.broker.ipc.http.UriTunnelServerRequestHandler

\"]","objectId":"one-game", "versionIdentity":1}

.broker.ipc.http.UriTunnelServerRequestHandler
ponseTime_ms=8
broker.ipc.http.UriTunnelServerRequestHandler
"objectId":"one-game", "versionIdentity":1}
.broker.ipc.http.UriTunnelServerRequestHandler
sponseTime_ms=0

Opp. Acts

PEDDERSEN plays Dos.

method=handleRequest, context=reply, reply={"payload"

method=POST, context=request,

method=handleRequest, context=reply, reply={"payload

method=POST, context=request,

request={"operationName:
1" :

request={"operationName [EU

method=handleRequest, context=reply, reply={"payload":"[]",

method=POST, context=request,

request={"operationName gam

method=handleRequest, context=reply, reply={"payload":"e","

method=POST, context=request,

request={"operationName" :"gam

method=handleRequest, context=reply, reply={"payload":"[]",

indus: Hand (1), Deck (4)

Just Cute.

Q7 e
Tres

Cual)

Just Cute. %0

PEDDERSEN plays Dos

Just Cute.

eV Limitation: No Observer

AARHUS UNIVERSITET

 FRDS Broker does not support server-to-client calls

— Thus GameServant cannot invoke GameObserver’s on the client
side

« Solution provided: The refresh button

Opp. Acts
&~ O O & imhotep.dk

 Thatis:
— The player which is not active player / not in turn

. have to press the ‘next opponent action’ button every 2-5-10
seconds
AU CS Henrik Baerbak Christensen 17

/v Guide to Tackling Integration

AARHUS UNIVERSITET

« System testing = manual testing
— But remember the small steps

 What do need?

— A Game server Done! Made in Broker | mandatory ©
— A Game Client Starting point provided...

D src
2 main
[J java
[5] hotstone
[=] broker
[=] client
=] common
[=] doubles
[=] main
@ HotStoneClient |
(@7 HotStoneServer
(@ HotStoneStoryTest

/v Small Step 1

AARHUS UNIVERSITET
| often call this ‘First Light’

— The first time | see “something working”

— (In Astronomy first light’ is the first time you see the night sky
through a new telescope ©)

» HotStoneClient’'s main() method
— Setup broker chain to server
— Initialize Iteration 8’s GUI code with our game proxy

— See a Ul pop up ©
 Or hit a zillion null ptr exception ®

AU CS Henrik Baerbak Christensen 19

eV Hints: HotStoneClient

AARHUS UNIVERSITET
« The Factory is prepared for Remote Play

ok
- -T-r]ea * Construct factory for minidraw coupled with a HotStone game.
‘OPPONENT MODE; " [@param game Tl_we game to be associated 1-.'itl:|
_ * (@param operatingPlayer The player that this UT represents

* @param uiType The type of UI to wisualize - either a

* HotSeat type (both players use the same UIL) or
* an Opponent type (each player has own UI).

=
public HotStoneFactory(Game game, Player operatingPlayer,

HotStoneDrawingType uiType) {

this.game = game;

this.operatingPlayer = operatingPlayer;

this.uiType = uiType;

Factory factory =
new HotStoneFactorySolution(game, whoToPla
HotStoneDrawingType.OPPONENT_MODE) ;

DrawingEditor editor =

new MiniDrawApplication(title: "Playing: + whoToPlay
+ " on GameId: '"" + gameid +"'",

factory);

AU CS Henrik Baerbak Christensen 20

Y First Light

AARHUS UNIVERSITET
o Just use a Null tool — editor.open();

editor.setTool(new NullToolQ)];

— But — We cannot do anything???

Yes, but small steps!!!
— Verify that the Ul pop up correctly

| see the correct Ul
| see correct server communication

| cannot do anything
— But that is “next small step”, right?!

AU CS Henrik Baerbak Christensen 21

/v

AARHUS UNIVERSITET

NullPointer Issue

« Most of you probably create CardClientProxies like crazy
— Every ‘getCardinHand()’ creates a new CardClientProxy

« But HotStoneDrawing keeps a mapping (card, actor):
— Given a card, it can fetch the associated Figure

add(actor);

actorMap.pu

« EXercise

(card,

actor);
for (Card card: game.getField(who)) {

HotStoneActorFigure actor = .get{card];

— Why will this no longer work???
— What is the solution to make the Drawing work again???
— And will this solution be backwards compatible ? workin ‘Hotseat' mode?

/v

We are actually almost done!
AARHUS UNIVERSITET

« What Tool to use?

— Of course not our ‘HotSeatStateTool’
* |t operates both Findus and Peddersen

 We need a new state tool which is almost identical but
not quite

editar.cpen(]ﬂ

editor.setTool(new DuvallUserInterfaceTool(editor, game, whoToPlay)):

* Thatis, a tool which determine what tool to delegate to,
based upon the figure underneath...

« But first — we have to discuss GU/ updates...

/v

AARHUS UNIVERSITET

Domain -> GUI Updates

The missing Observer pattern ®

Y o GUI Updates: Analysis

AARHUS UNIVERSITET

« How did it work in the HotSeat variant?

— Example: User clicks the Hero figure which is Thai Chef:
» Call game.usePower(...)
» Game calls proper observer methods

onlJsePower (FINDUES) — due to the mutator being called
onHerolUpdate (FINDUS) — due to herco spending mana
onHerolUpdate (PEDDERSEN) - due to opponent health reduced

» HotStoneDrawing implements these, and redraws Gfx
— In the ‘onHeroUpdate()’ methods

* Qurissue here: Server cannot call ‘onHeroUpdate()’

localhost 91.112.34.12

GamecClientProxy GameServant

Impossible

AU CS Henrik Baerbak Christensen 25

/v Missing Observer

AARHUS UNIVERSITET

« Where does that lead us?

— FRDS.Broker is a lousy framework! ©
* No, but it respects the client-server paradigm, as REST does...
 Itis not allowed, because it is an architecturally bad idea...

— Build observer handling into the GameClientProxy?

* Hm...
public Statycs wsePower(Plaver whol {
observerHandler.notifyUsePower(who);
« Exercise: What is difficult | // 772 wnr 254
N gletonId,
here??? oberati . .
perationNames.GAME_USE_POWER, Status.class,
who) ;
) i _ . . }
onlUsePower (FINDUS) — due to the mutator being called
onHerolUpdate (FINDUS) — due to hero spending mana
onHerolUpdate (PEDDERSEN) - due to opponent health reduced

AU CS Henrik Baerbak Christensen 26

/v Missing Observer

AARHUS UNIVERSITET

« HotStone is a really tricky game, as the open-ended
world of ‘card effects’ and ‘hero powers’ allows new
variants to be made but only the server knows what
happened!

— The idea, nevertheless, may make sense in other games

« What ever we do client side, it will always be a qualified
guess

— And we will guess wrong!!!
* Inconsistent GUI Findus sees one thing, Peddersen another

 Proposal rejected!

Y Second Proposal

AARHUS UNIVERSITET
« The path you will take in the Broker Il is a performance

wise catastrophe — but it works!

— SWEA is foremost a learning experience, not product
development...

 The Brute Force Redraw Approach
— ® because it is very expensive performance wise...
— (and energy-wise @)

* Proposal: As we do not know what happened, we simply
redraw everything upon every mutation call...

eV Brute Force Redraw

AARHUS UNIVERSITET
* Fortunately MiniDraw has the method required

drawing.requestUpdate();

* In the delivered HotStoneDrawing implementation

public void reguestUpdate() {
removeAllFigures();

createAndAddFiguresForGameState();
}

« Downside
— About 40-50 remote calls ®

AU CS Henrik Baerbakiies .

request count: 168
----> 75% EXECUTING [20s]

29

/v

AARHUS UNIVERSITET

When do | need a brute force redraw?
— Upon every mutator call...

Who makes the mutator calls?
— The tools

Who delegates to the tools?
— The State tool ©

— One small optimization
* No redraw for null tool © try {

state.mouselp(e, x, ¥);

public void mouseUp(MouseEvent

if (state != theNullTool) {
System.out.printiln("---=
drawing.requestUpdate();
+
} catch (IPCException exc) {

AU CS Henrik Baerbak Christensen

When?

e, int x, int y) {

BruteForce Redraw");

30

/v (Counting Decorator)

AARHUS UNIVERSITET
« To get an idea of amount of client requestor calls

reguestor = new CountingDecoratorReguestor(reguestor);

public <T=» sendRequestAndAwaitReply(String objectId, String operationName, Type typeOfReturnValue, Object... arguments) {
counter++;
if (counter % 18 == 8)

System.out.println("--> request count: " + counter++);

return requestor.sendRequestAndAwaitReply(objectId, operationName, typeOfReturnValue, arguments);

}

5% EXECUTING [20s]

AU CS Henrik Baerbak Christensen 31

/v

AARHUS UNIVERSITET

... Back to the Tool

/v We are actually almost done!

AARHUS UNIVERSITET

« We need a new state tool which is almost identical but
not quite

editcr.cpen(}ﬂ
editor.setTool(new DuallUserInterfaceTool(editor, game, whoToPlay));

— Which, qua the previous analysis, does brute force redrawing
after each mutation call...

* |n addition, there is one new button to cope with:

— The ‘refresh’ button
* You tool must handle clicking this... L —

Opp. Acts

AU CS Henrik Baerbak Christensen 33

/v OpponentButtonTool

AARHUS UNIVERSITET

* What should an OpponentButtonTool do?
— Well — redraw the GUI, right ©

* One missing thing
— The Blue Message boxes are gone ®

— Leave it at that is quite okK...
« Same argument — we do not know what to write in them

— [How come Henrik’s remote game does include them??7?]

VeV A Third/Forth Path

AARHUS UNIVERSITET

« The performance penalty is problematic
— Testing on localhost is probably OK
— Having a server in Amsterdam is not OK

| will discuss another path taken in the HotStone game
server...

— ... in my energy-efficiency talk
« Zillions of network calls wastes quite a lot of energy!

/v

AARHUS UNIVERSITET

« Ala

— Rootlnvoker
» Delegating to
— Gamelnvoker
— CardInvoker
— Herolnvoker

« FRDS §5.4 issue 2

AU CS

Broker 2.3

« Split the ‘blob invoker’ from 2.2 into subinvokers,
following the principles in multi type dispatch.

Multi Type Dispatching

Consider an Invoker that must handle method dispatching for a large set of
roles. To avoid a blob or god class Invoker implementation, you can follow
this template:

- Ensure your operationld follows a mangling scheme that allows extract-

ing the role name. A typical way is to construct a String type operationld
that concatenates the type name and the method name, with a unique
seperator in between. Example: “FutureGame_getToken”.

« Construct SubInvokers for each servant role. A SubInvoker is role

specific and only handles dispatching of methods for that particular
role. The SubInvoker implements the Invoker interface.

+ Develop a RootInvoker which constructs a (key, value) map that maps

from role names (key) to sub invoker reference (value). Example: if you
look up key “FutureGame” you will get the sub invoker specific to the
FutureGameServant’s methods

+ Associate the RootInvoker with the ServerRequestHandler. In it’s han-

dleRequest() calls, it demangles the incoming operationld to get the role
name, and uses it to look up the associated SubInvoker, and finally
delegates to its handleRequest() method.

Henrik Baerbak Christensen

36

/v Broker 2.3

AARHUS UNIVERSITET
« This exercise does give points in your score, but...

 |tis valid to skip it entirely
— Permanently on the backlog

« At the Exam, | have yet to see a student who solves the
exam exercise so fast, that we get to discuss multitype

dispatch

/v

AARHUS UNIVERSITET

Side Note

How | have solved the
‘missing Observer’ issue.

In a Compositional Way

eV Idea

AARHUS UNIVERSITET

« The observer events are there!
— They happen on the server side

 We just can’t get them over the network
— Broker does not allow server to call an Observer on client
— Only Pass-by-Value

* One Solution:
— Record observer events as ‘pass-by-value’ objects on server
— Transfer this List<ObserverEvent> to client
— Replay this list of events on the client side

VeV GameEvent Recorder

AARHUS UNIVERSITET
« How to Record all observer events?

piblic class GameEventRecorder implements GameObserwver { 18 usages He

private List{EameEvkntb gameEventlList; 13 usages

public GameEventRecorder() { gameEventlList = new Arraylist<>(); }

diverride Henrik Beerbak Christensen *
public void onAttackCard(Player playerAttacking, Card attackingCard, Card defendingCard) {
gameEventlList.add(new GameEvent({GameEvent.Type.ON_ATTACK_CARD, playerAttacking,
getIDOf(attackingCard), getIDOf(defendingCard)));

AU CS Henrik Baerbak Christensen 40

eV Add that observer to Game

AARHUS UNIVERSITET

« Actually need one recorder for each player!
— Why?

for (Player player : Player.valves()) {
GameEventRecorder eventRecorder = new GameEventRecorder():
game.addﬂbserver(euentﬁecurder}d

gameContext.assignEventRecorderToPlayer(player, eventRecorder);

}

AU CS Henrik Baerbak Christensen 41

VeV Client Side

AARHUS UNIVERSITET

« The GameClientProxy’s call of any mutator must now
— Ask server for that list of events (and clear it server side)
— Replay the events

« This is not the responsibility of a ClientProxy!

« We know the pattern to solve this, right?

eV Decorator

AARHUS UNIVERSITET
« Decorator: Add behavior to existing class

public interface MyGame extends Game { 2 imp
void requestRecordedEventlListAndReplay();

¥ public class MyGameEventReplayDecorator implements MyGame, Identifiable {

3 usages

private final ObserverHandler observerHandler;

2 usages

private final GameEventPlayer replayer;
private boolean requestEventlListAndReplay() {

reguesting all recoraed

Henrik Bearbak Christensen +3

6 usages

=T =TeiT 2]
To 5el .-L'.I.-'_-_l

m
0
=]
—
—

ne mar
ugh the observer of game state changes
Type collectionType =

new TypeTokenclList<GameEvent>>() { Henrik Barbak Christensen

}.getType();

List<GameEvent> theEventlList =
requestor.sendRequestAndAwaitReply(decoratee.getID(),
OperationNames.GAME_GET_RECORDED_EVENTS_AND_CLEAR, collectionType,

whoAmIPlaying);

J/ oand then replay it on the local observer
boolean replayedAWonOrEoTEvent = replayer.replay(theEventlList);

AU CS

eV Hidden Method

AARHUS UNIVERSITET
 Relies on a Hidden Method in the Invoker

requestor.sendRequestAndAwaitReply(decoratee.getID(),
OperationNames.GAME_GET_RECORDED_EVENTS_AND_CLEAR, collectionType,

whoAmIPlaying);

S off S [[O I S [P IR L Iy N R - o 3

T i L210 F Lidao L O S v o CVECIiLa LT PLs LG 4L

LIy o L LF =L £ LAETiL Lo s CWECIfLa (21 = LI L AL

} else if [uperatiunﬂame.equa‘l.s(l]peratiunﬂames.EﬂHE_EDHDED_EUENTS_AND_ELEAH}} {

LAJTAGUW EWEITLO

List<GameEvent> eventlList = lobby.getEventlListFor(objectId, who);

reply = new ReplyObject(HttpServletResponse.S5C_0K, gson.toJsonl(eventlList));

n o Fho owant Procandon €£an Fho nonanoctT ro T o
Ll LIE EVENL C LU LIE Ju LITE CHUVESLANY MLUYE

lobby.clearEventList(objectId, whol;

AU CS Henrik Baerbak Christensen 44

eV Latest Addition

AARHUS UNIVERSITET
« Add ‘auto fetch every 2,5 seconds and reply’

* Not the responsibility of the ReplayDecorator

« We know the pattern to solve that ©

timer.scheduleAtFixedRate(new RetrieveEventListAndReplayTimerTask(),
@, DELAY_BETWEEN_SERVER_PULLS_SECOND);

public class MyGameAutoEventReplayDecorator implements MyGame { +

AU CS Henrik Baerbak Christensen

45

Vav So a double decorated Game

AARHUS UNIVERSITET
« Creating the resulting ‘Game’ is a three step process

GameClientProxyMarker gameClientProxy =
proxyFactory.createGameClientProxy(requestor, gameid, clientNameService);

MyGame myGame = new MyGameEventReplayDecorator(reguestor,
gameClientProxy, proxyFactory, whoToPlay);

myGame =
new MyGameAutoEventReplayDecorator(myGame, objectManager,

whoToPlay, DELAY_BETWEEN_SERVER_PULLS_MILLISECOND);

AU CS Henrik Baerbak Christensen 46

/v Compositional Design

AARHUS UNIVERSITET

* Morale:
— I needed to add a lot of complex additional behavior
— But | used compositional design to change by addition!

« Only adding new classes, not changing any!
— Event recording by adding an observer server side
» And separate classes to record events and replay them

— Fetching event list from server by adding decorators on the
GameClientProxy

 All additions are under automated test control!

public class TestTransferGameEventsOverNetwork {
private Game servantGame, 2 usag:s

clientGame; 26 usage

/v

AARHUS UNIVERSITET

HotStone Server Loads

Modern CPUs are bored...

b hotstone.littleworld.dk

AARHUS UNIVERSITET

« HotStone game server — with no games running

— Worker
Dacmon shreads: o
threads are

Show: Live Threads~ | Timeline: @& @ @&

Threads visualization

(13 7
a r e Name 11:22:00 AM 11:22:05 AM 11:22: 30 AM 11:22:15 AM 11:22:20 AM Running Total hd
O RMI TCP Connection(2]-127.0.0.1 3.229.283ms (100%) 3.229.283 ms [a

B Session-HouseKeeper-369c02be-]| 0 ms (0%) 3,229,283 ms
B signal Dispatcher 3,229,283 ms (100%)|3,229,283 ms
O Thread-0 0ms (0%) 3,229,283 ms
B Connector-Scheduler-725e81 6 0-1 | — 0ms (0%) 3.106.319 ms
B qtps22625568-31 24,995 ms (0.9%) 2,933,299 ms

B qtp622625568-32 34,009 ms (23%) 800,098 ms
— HTTP broker z==e
B qtp622625568-34

49,994 ms (2% 800,098 ms
B qtp622625568-35

25,005 ms (31%) 800,098 ms
SeS H qtp622625568-36
u B qtp622625568-38

28,006 ms (35%) 799,097 ms [
30.003 ms (2E%) 799.087 ms

B qtp622625568-39

O qtp622625568-41

40,985 ms (51%) 789,087 ms
Spa rk-J ava B qtp622625568-42

30,006 ms (38%) 799,097 ms
B qtp622625568-43

401.039 ms (50.2%) 799.097 ms
36,999 ms (46%) 797,097 ms
24,002 ms (3% 797.097 ms

B qtp62262555846 23.001ms (29%) 797.097 ms
u SeS J ett B qtp62262556847 37,009 ms (<e%) 797,087 ms

B qtp622625568-49 15,982 ms (23%) 705,080 ms

M qtp622625568-50 17,999 ms (26%) 705,080 ms |=|

B qtp622625568-51

[] WhiCh may W qtp622625568-52

B qtp622625568-53

31.991 ms (45%) 705,080 ms
14,992 ms (23%) 666,078 ms
16,999 ms (26%| 666,078 ms
16.006 ms (24%) 666,078 ms
31,988 ms (55%) 577,068 ms
17.004 ms (295%) 577.068 ms

H qtp622625568-59 8.004 ms (14%) 577.068 ms
200 O qtp622625568-60 I T, - 389,044 ms [67.4%) 577,068 ms
B qtps22625568-61 6.006 ms (1% 577.068 ms

M qtp622625568-62 29.006 ms (5% 577.068 ms
rea S B qtp622625568-64

7,998 ms (L4%) 577,068 ms ¥

B qtp622625568-56

ru n u p to B qtp622625568-57

B qtp622625568-58

[ul»]
[Running [Sleeping [Wait [Park [Monitor

AU CS Henrik Baerbak Christensen 49

s

\ 4
AARHUS UNIVERSITET

hotstone.littleworld.dk

« With 300 concurrent games running

Threads

Live threads: 41
Daemon threads: 9

Timeline

Show: Live Threads » | Timeline: Q Q @‘

Threads visualization

Thread Dump

X

Name
@ RMI TCP Accept-0
B RMI TCP Connection(2)-127.0.0.1
B Session-HouseKeeper-369c02be-]

o

@ Signal Dispatcher
O Thread-0

B Connector-Scheduler-725e8160-1 | —— Oms (0% 3,242,338 ms

O qtp622625568-31
B qtp622625568-32
O qtp622625568-34
O qtp622625568-35
B qtp622625568-36
O qtp622625568-38
B qtp622625568-39
B qtp622625568-41
O qtp622625568-42
B qtp622625568-43
B qtp622625568-46
O qtp62262556847
B qtp622625568-49
B qtp622625568-50
B qtp622625568-51
O qtp622625568-52
O qtp622625568-53
B qtp622625568-56
B qtp622625568-57
O qtp622625568-58
B qtp622625568-59
B qtp622625568-60
B qtp622625568-61
E qtp622625568-62
O qtp622625568-64

o~
w

11:24:25 AMa 11:24:30 AM 11:24:35 AM Running Total -
3,365,302 ms (100%) 3,365,302 ms [a
3.365.302 ms (100%)|3.365.302 ms
0ms (0%) 3,365,302 ms
3.365.302 ms (100%)|3.365.302 ms
0 ms (0%) 3,365,302 ms

34,995 ms (11%) 3,069,318 ms
45,013 ms (48%]) 936,117 ms
30,006 ms (22%) 936,117 ms
33.005ms (35%) 935.116 ms
37,002 ms (4%) 935,116 ms
54,000 ms (5.8%) 935,116 ms
36,004 ms (395%) 935,116 ms
452,046 ms (483%) 935,116 ms
40,984 ms (44%] 933116 ms
31.002 ms (33%) 933.116 ms
30,002 ms (22%) 933,116 ms
47.008 ms (s%) 933.116 ms
21,997 ms (26%) B41.099 ms
24,004 ms (25%) B41,099 ms| |
41,998 ms (5%) B41,099 ms
21,892 ms (27%) 802,097 ms
26,007 ms (32%) 802,097 ms
23,002 ms (25%) B02.097 ms
41,000 ms (5.7%) 713,087 ms
26,005 ms (36%) 713.087 ms
21,002 ms (25%) 713,087 ms
8. ms (614%) 713,087 ms
9,006 ms (13%] 713,087 ms
41,010 ms (5.8%) 713,087 ms
13,993 ms (2] 713,087 ms | =

@
=)
wn
hY

-

[inTe]

AU CS

9 Running [Sleeping [CIWait [Park [Monitor

Henrik Baerbak Christensen 50

/v

AARHUS UNIVERSITET

Conclusions

Happy Coding...

