
Software Engineering

and Architecture

Broker II Mandatory

Distributed HotStone

Broker II

• Learning Goal

– Get the handle object reference methods implemented

• c = getCardInHand(w,i), attackCard(w,a,d), and cousins...

• Involves objectId generation and usage

– Get the MiniDraw GUI integrated in a full client

– Get the Invoker code segregated

• Refactor ‘blob invoker’ to a subinvoker/multitype dispatch approach

• Product Goal

– JUnit test suite that cover all broker related code

– System testing of a full HotStone GUI based remote play! Wow!

CS@AU Henrik Bærbak Christensen 2

Broker 2.1

• TDD the Game methods that handles object references.

• That is, write JUnit tests that implement the FRDS

method

AU CS Henrik Bærbak Christensen 3

Small Steps

• Keep doing it ‘depth-first’

– But the first ‘deep dive’ have some issues

• I recommend to introduce AlphaStone as your servant

– To avoid writing too much stub code 

• Example:

– On my test list: “make getCardInHand(Findus, 0) work”

AU CS Henrik Bærbak Christensen 4

Small Steps

• Take small steps – again a proxy step + an invoker step

– (1) Involves making the GameClientProxy method

• Request String/objectId from the server

• Wrap that objectId in a CardClientProxy

– (2) Involves making the Invoker handling

– If OpName.equals(GAME_GET_CARD_IN_HAND)

» Ask game for the card - servant upcall

» Return the card’s objectId as serialized JSON

AU CS Henrik Bærbak Christensen 5

Small Steps - FakeIt

• … But the test case likely fails (it did for me) – why?

• Because we still have FakeIt lookup code for the card!

• Now test drive the invoker side’s

– Insert (card id, card) mapping in a name service

– Refactor the fake ‘lookupCard()’ method into a proper impl.

AU CS Henrik Bærbak Christensen 6

One method done; repeat
until all covered ☺

ID Generation

• There are several ways to generate ID’s

– Invoker can do it

– Domain object can do it

• IDs are rather pervasive (Read: all objects need it, even

the client proxy) in a distributed setting so my

recommendation is a role interface on the domain obj:

– RoleInterface: interface Identifiable { String getId(); }

– Let Card and Hero extend that interface

– Let constructor create a random id ala

AU CS Henrik Bærbak Christensen 7

Pass-By-Ref Parameters

• Game have many methods whose parameters are object

references

• But – they are server created objects, so no problem

AU CS Henrik Bærbak Christensen 8

Removing FakeIt / Scaffolding

• Once you start removing the scaffolding/fake it code

• … other tests may fail…

– Huh – what is going on?

AU CS Henrik Bærbak Christensen 9

Removing Scaffolding

• My original test case created CardClientProxy directly

• Now, we cannot do that as

– Clients do not create cards – servers do!

• So the answer is of course…

– Servers create cards, so our test case must follow that rule

• Ups – and test cases/doubles refactored…

– Probably other return values, so asserts must be updated…
AU CS Henrik Bærbak Christensen 10

Removing Scaffolding

• Alternatively, you can also insert your ‘test stub’ card

directly into the Invoker’s name service…

AU CS Henrik Bærbak Christensen 11

Note: I have solved the
‘dispatching’ exercise…

Iterables

• And what about Iterable<>?

• The return type is ‘something that can iterate Cards’

– List<Card> is an Iterable<? extends Card>

– And what is Card in our context?

• Solution:

– List of ObjectId’s of the associated cards from server

– Client must then convert that into a List<CardClientProxy>

AU CS Henrik Bærbak Christensen 12

List<Something>

• Gson can easily marshall and demarshall Lists but you

need a bit of ‘magic’ to define that type.

List<String>.class is not valid Java.

– Actually shown an example of it in TeleMed code

AU CS Henrik Bærbak Christensen 13

List<String>

• So this is the way to go

• Fill in the details…

AU CS Henrik Bærbak Christensen 14

2.2 System Testing

A full distributed playable system…

Product Goal: Full system

• A server and

– Two clients

AU CS Henrik Bærbak Christensen 16

Limitation: No Observer

• FRDS Broker does not support server-to-client calls

– Thus GameServant cannot invoke GameObserver’s on the client

side

• Solution provided: The refresh button

• That is:

– The player which is not active player / not in turn

– … have to press the ‘next opponent action’ button every 2-5-10

seconds…
AU CS Henrik Bærbak Christensen 17

Guide to Tackling Integration

• System testing = manual testing

– But remember the small steps

• What do need?

– A Game server Done! Made in Broker I mandatory ☺

– A Game Client Starting point provided…

AU CS Henrik Bærbak Christensen 18

Small Step 1

• I often call this ‘First Light’

– The first time I see “something working”

– (In Astronomy ‘first light’ is the first time you see the night sky

through a new telescope ☺)

• HotStoneClient’s main() method

– Setup broker chain to server

– Initialize Iteration 8’s GUI code with our game proxy

– See a UI pop up ☺

• Or hit a zillion null ptr exception 

AU CS Henrik Bærbak Christensen 19

Hints: HotStoneClient

• The Factory is prepared for Remote Play

– The

‘OPPONENT_MODE’

AU CS Henrik Bærbak Christensen 20

First Light

• Just use a Null tool –

– But – We cannot do anything???

• Yes, but small steps!!!

– Verify that the UI pop up correctly

• I see the correct UI

• I see correct server communication

• I cannot do anything

– But that is “next small step”, right?!

AU CS Henrik Bærbak Christensen 21

NullPointer Issue

• Most of you probably create CardClientProxies like crazy

– Every ‘getCardInHand()’ creates a new CardClientProxy

• But HotStoneDrawing keeps a mapping (card, actor):

– Given a card, it can fetch the associated Figure

• Exercise

– Why will this no longer work???

– What is the solution to make the Drawing work again???

– And will this solution be backwards compatible? Work in ‘HotSeat’ mode?

AU CS Henrik Bærbak Christensen 22

We are actually almost done!

• What Tool to use?

– Of course not our ‘HotSeatStateTool’

• It operates both Findus and Peddersen

• We need a new state tool which is almost identical but

not quite

• That is, a tool which determine what tool to delegate to,

based upon the figure underneath…

• But first – we have to discuss GUI updates…

AU CS Henrik Bærbak Christensen 23

Domain -> GUI Updates

The missing Observer pattern 

GUI Updates: Analysis

• How did it work in the HotSeat variant?

– Example: User clicks the Hero figure which is Thai Chef:

• Call game.usePower(…)

• Game calls proper observer methods

• HotStoneDrawing implements these, and redraws Gfx

– In the ‘onHeroUpdate()’ methods

• Our issue here: Server cannot call ‘onHeroUpdate()’

AU CS Henrik Bærbak Christensen 25

91.112.34.12
GameServant

localhost
GameClientProxy

Impossible

Missing Observer

• Where does that lead us?

– FRDS.Broker is a lousy framework! ☺

• No, but it respects the client-server paradigm, as REST does…

• It is not allowed, because it is an architecturally bad idea…

– Build observer handling into the GameClientProxy?

• Hm…

• Exercise: What is difficult

here???

AU CS Henrik Bærbak Christensen 26

Missing Observer

• HotStone is a really tricky game, as the open-ended

world of ‘card effects’ and ‘hero powers’ allows new

variants to be made but only the server knows what

happened!

– The idea, nevertheless, may make sense in other games

• What ever we do client side, it will always be a qualified

guess

– And we will guess wrong!!!

• Inconsistent GUI Findus sees one thing, Peddersen another

• Proposal rejected!

AU CS Henrik Bærbak Christensen 27

Second Proposal

• The path you will take in the Broker II is a performance

wise catastrophe – but it works!

– SWEA is foremost a learning experience, not product

development…

• The Brute Force Redraw Approach

–  because it is very expensive performance wise…

– (and energy-wise )

• Proposal: As we do not know what happened, we simply

redraw everything upon every mutation call…

AU CS Henrik Bærbak Christensen 28

Brute Force Redraw

• Fortunately MiniDraw has the method required

• In the delivered HotStoneDrawing implementation

• Downside

– About 40-50 remote calls 

AU CS Henrik Bærbak Christensen 29

When?

• When do I need a brute force redraw?

– Upon every mutator call…

• Who makes the mutator calls?

– The tools

• Who delegates to the tools?

– The State tool ☺

– One small optimization

• No redraw for null tool ☺

AU CS Henrik Bærbak Christensen 30

(Counting Decorator)

• To get an idea of amount of client requestor calls

AU CS Henrik Bærbak Christensen 31

… Back to the Tool

We are actually almost done!

• We need a new state tool which is almost identical but

not quite

– Which, qua the previous analysis, does brute force redrawing

after each mutation call…

• In addition, there is one new button to cope with:

– The ‘refresh’ button

• You tool must handle clicking this…

AU CS Henrik Bærbak Christensen 33

OpponentButtonTool

• What should an OpponentButtonTool do?

– Well – redraw the GUI, right ☺

• One missing thing

– The Blue Message boxes are gone 

– Leave it at that is quite ok…

• Same argument – we do not know what to write in them

– [How come Henrik’s remote game does include them???]

AU CS Henrik Bærbak Christensen 34

A Third/Forth Path

• The performance penalty is problematic

– Testing on localhost is probably OK

– Having a server in Amsterdam is not OK

• I will discuss another path taken in the HotStone game

server…

– … in my energy-efficiency talk

• Zillions of network calls wastes quite a lot of energy!

AU CS Henrik Bærbak Christensen 35

Broker 2.3

• Split the ‘blob invoker’ from 2.2 into subinvokers,

following the principles in multi type dispatch.

• Ala

– RootInvoker

• Delegating to

– GameInvoker

– CardInvoker

– HeroInvoker

• FRDS §5.4 issue 2

AU CS Henrik Bærbak Christensen 36

Broker 2.3

• This exercise does give points in your score, but…

• It is valid to skip it entirely

– Permanently on the backlog

• At the Exam, I have yet to see a student who solves the

exam exercise so fast, that we get to discuss multitype

dispatch

AU CS Henrik Bærbak Christensen 37

Side Note

How I have solved the

‘missing Observer’ issue.

In a Compositional Way

Idea

• The observer events are there!

– They happen on the server side

• We just can’t get them over the network

– Broker does not allow server to call an Observer on client

– Only Pass-by-Value

• One Solution:

– Record observer events as ‘pass-by-value’ objects on server

– Transfer this List<ObserverEvent> to client

– Replay this list of events on the client side

AU CS Henrik Bærbak Christensen 39

GameEvent Recorder

• How to Record all observer events?

AU CS Henrik Bærbak Christensen 40

Add that observer to Game

• Actually need one recorder for each player!

– Why?

AU CS Henrik Bærbak Christensen 41

Client Side

• The GameClientProxy’s call of any mutator must now

– Ask server for that list of events (and clear it server side)

– Replay the events

• This is not the responsibility of a ClientProxy!

• We know the pattern to solve this, right?

AU CS Henrik Bærbak Christensen 42

Decorator

• Decorator: Add behavior to existing class

AU CS Henrik Bærbak Christensen 43

Hidden Method

• Relies on a Hidden Method in the Invoker

AU CS Henrik Bærbak Christensen 44

Latest Addition

• Add ‘auto fetch every 2,5 seconds and reply’

• Not the responsibility of the ReplayDecorator

• We know the pattern to solve that ☺

AU CS Henrik Bærbak Christensen 45

So a double decorated Game

• Creating the resulting ‘Game’ is a three step process

AU CS Henrik Bærbak Christensen 46

Compositional Design

• Morale:

– I needed to add a lot of complex additional behavior

– But I used compositional design to change by addition!

• Only adding new classes, not changing any!

– Event recording by adding an observer server side

• And separate classes to record events and replay them

– Fetching event list from server by adding decorators on the

GameClientProxy

• All additions are under automated test control!

AU CS Henrik Bærbak Christensen 47

HotStone Server Loads

Modern CPUs are bored…

hotstone.littleworld.dk

• HotStone game server – with no games running

– Worker

threads are

“parked”

– HTTP broker

uses

Spark-Java

uses Jetty

• Which may

run up to

200

threads

AU CS Henrik Bærbak Christensen 49

hotstone.littleworld.dk

• With 300 concurrent games running

AU CS Henrik Bærbak Christensen 50

Conclusions

Happy Coding...

